

Proteins

S.K.Sinha, Kota

Levels of Protein Structure

Proteins show 4 levels of structural organisation:

Levels of Protein Structure

Proteins show 4 levels of structural organisation:

1.Primary structure = amino acid sequence

Determined by the genetic code of the mRNA.

2. Secondary structure = folding and twisting of a single polypeptide chain.

- Result of weak H-bond and electrostatic interactions.
- e.g., α -helix (coiled) and β -pleated sheet (zig-zag).

Levels of Protein Structure

3. Tertiary structure = three dimensional shape (or conformation) of a polypeptide chain.

• Function of R groups contained in the polypeptide.

4. Quaternary structure = association between polypeptides in multi-subunit proteins (e.g. hemoglobin).

• Occurs only with two or more polypeptides.

Peptide Bonds

 $-\alpha$ -carboxyl of one amino acid is joined to α -amino of a second amino acid (with removal of water)

- only α -carboxyl and α -amino groups are used, not R-group carboxyl or amino groups.

Peptide bond formation

The peptide bond is planar

Polypeptides & Proteins

Peptide bond: The special name given to the amide bond between the α -carboxyl group of one amino acid and the α -amino group of another.

<u>Serinylalanine (Ser-Ala)</u>

Peptides

Dipeptide: A molecule containing two amino acids joined by a peptide bond.

Peptides

Tripeptide: A molecule containing three amino acids joined by peptide bonds.

Polypeptide: A macromolecule containing many amino acids joined by peptide bonds.

Peptides

Protein: A biological macromolecule of molecular weight 5000 g/mol or greater, consisting of one or more polypeptide chains.

Writing Peptides

By convention, peptides are written from the left, beginning with the free - NH_3^+ group and ending with the free -COO⁻ group on the right.

<u>Secondary structure</u>

<u>The α-helix</u>

• In the α -helix, the carbonyl oxygen of residue "i" forms a hydrogen bond with the amide of residue "i+4".

• Although each hydrogen bond is relatively weak in isolation, the sum of the hydrogen bonds in a helix makes it quite stable.

• The propensity of a peptide for forming an α -helix also depends on its sequence.

Protein structure: sheets

- notice the difference in H-bonding pattern between parallel and anti-parallel betasheets
- also notice orientation of side chains relative to the sheets

Tertiary structure

<u>Quaternary structure</u>

Types of interactions

interaction	nature	bond length	"bond" strength	example
ionic (salt bridge)	electrostatic	1.8-4.0 Å (3.0-10 Å for like charges)	1-6 kcal/mol	positive: K, R, H, N-terminus negative: D, E, C-terminus
hydrophobic	entropy	-	2-3	hydrophobic side chains (M,I,L,V,F,W,Y,A,C,P)
H-bond	H-bonding	2.6-3.5	2-10	H donor, O acceptor
van der Waals	attraction/ repulsion	2.8-4.0	<1	closely-spaced atoms; if too close, repulsion
aromatic- aromatic	π-π	4.5-7.0	1-2	F,W,Y (stacked)
aromatic-amino group	H-bonding	2.9-3.6	2.7-4.9	N-H donor to F,W,Y

Protein-solvent interactions

hydrophilic amino acids

- these amino acids tend to interact extensively with solvent in context of the folded protein; the interaction is mostly ionic and H-bonding

Protein-solvent interactions

hydrophobic amino acids

-these tend to form the 'core' of the protein, *i.e.*, are buried within the folded protein; some hydrophobic residues can be entirely (or partially) exposed

small neutral amino acids

 less preference for being solvent-exposed or not

<u>The disulfide bond</u>

• Disulfide bond formation is a covalent modification; the oxidation reaction can either be intramolecular (within the same protein) or inter-molecular (within different proteins)

Protein denaturants

- high temperatures
 - cause protein unfolding, aggregation

• low temperatures - some proteins are sensitive to cold denaturation

heavy metals (*e.g.*, lead, cadmium, etc.)
 highly toxic; efficiently induce the 'stress response'

Protein denaturants

 proteotoxic agents (*e.g.*, alcohols, crosslinking agents, etc.)

oxygen radicals, ionizing radiation
 cause permanent protein damage

 chaotropes (urea, guanidine hydrochloride, etc.)

- highly potent at denaturing proteins; often used in protein folding studies

<u>Classes of proteins</u>

Functional definition: Enzymes: Accelerate biochemical reactions

Structural: Form biological structures Transport: Carry biochemically important substances

Defense: Protect the body from foreign invaders

<u>Classes of proteins</u>

Structural definition: Globular: Complex folds, irregularly shaped tertiary structures **Fibrous:** Extended, simple folds - generally structural proteins

<u>Cellular localization definition:</u> <u>Membrane:</u> In direct physical contact with a membrane; generally water insoluble. <u>Soluble:</u> Water soluble; can be anywhere in the cell.

<u>Classes of proteins</u>

	Conjugated Prot	eins	
	Prosthetic group	Example	
Lipoproteins	Lipids	β_1 -Lipoprotein of blood	
Glycoproteins	Carbohydrates	Immunoglobulin G	
Phosphoproteins	Phosphate groups	Casein of milk	
Hemoproteins	Heme (iron porphyrin) Hemoglobin		
Flavoproteins	Flavin nucleotides)	Succinate dehydrogenase	
Metalloproteins	Iron Calcium Copper	Ferritin Calmodulin Plastocyanin	

Use of Amino Acids

Aspartame (aspartyl-phenylalanine-1-methyl ester) is an artificial sweetener. **5-HTP** (5-hydroxytryptophan) has been used to treat neurological problems associated with **PKU** (phenylketonuria), as well as depression. L-DOPA (L-dihydroxyphenylalanine) is a drug used to treat Parkinsonism. Monosodium glutamate is a food additive to enhance flavor.

Classification of Proteins

Proteins can be classified into two types on the basis of their molecular shape.

(a) Fibrous proteins :(b) Globular proteins :

Use of Amino Acids

Sinha Sir Kota

(a) Fibrous proteins : The polypeptide chains run parallel and are held together by hydrogen and disulphide bonds, then fibre- like structure is formed.

Such proteins are generally insoluble in water.
Examples:
1. keratin (present in hair, wool, silk)
2. Myosin (present in muscles),

Use of Amino Acids

(b) Globular proteins:

This structure results when the chains of polypeptides coil around to give a spherical shape. These are usually soluble in water.

Examples: 1. Insulin 2. albumins