DNA and RNA

By S.K.Sinha , Kota

Pyrimidines and Purines

Pyrimidine and purine are the names of the parent compounds of two types of nitrogen-containing heterocyclic aromatic compounds.

Purine Pyrimidine Purine Pyrimidine A C G T/U

Important Pyrimidines

Pyrimidines that occur in DNA are cytosine and thymine. Cytosine and uracil are the pyrimidines in RNA.

Pyrimidines with 2 carbonyls

Uracil

Methylated Uracil

Thymine

Ammoniated Uracil

Cytosine

Important Purines

Adenine and guanine are the principal purines of both DNA and RNA.

Adenine Ammoniated Purine

Adenine

Mono ammoniated mono carbonylated Purine

Guanine

PurinePyrimidinePurinePyrimidineACGT/U

Nucleosides

Sides:

N-Glycosides of Ribose / Deoxyribose Sugars.

The purine or pyrimidine part of a nucleoside is referred to as a *purine or pyrimidine base*.

Uridine

Uridine : Pyrimidine nucleoside made up of Ribose sugar and Uracil Nitrogenous base.

Uridine (a pyrimidine nucleoside)

Adenosine

Adenosine: A Purine nucleoside made up of deoxyRibose sugar and Adenine Nitrogenous base.

learnoma.com

Nucleotides

Nucleotides

Nucleotides are phosphoric acid esters of nucleosides.

Phosphate + Sugar+ Nitrogenous Base

Adenosine 5'-Monophosphate (AMP)

Adenosine 5'-monophosphate (AMP) is also called 5'adenylic acid.

Adenosine 5'-Monophosphate (AMP)

Adenosine 5'-monophosphate (AMP) is also called 5'adenylic acid.

Adenosine Diphosphate (ADP)

Adenosine Triphosphate (ATP)

ATP Stores Energy

Each step is endothermic. Energy for each step comes from carbohydrate metabolism (glycolysis). Reverse process is exothermic and is the source of biological energy.

 ΔG° for hydrolysis of ATP to ADP is -35 kJ/mol

Nucleic Acids

Nucleic Acids

Nucleic acids are polymeric nucleotides 5' Oxygen of one nucleotide is linked to the 3' oxygen of another via phosphate.

A section of a polynucleotide chain.

Two antiparallel strands of DNA are paired by hydrogen bonds between purine and pyrimidine bases.

	DNA	RNA
Sugar is deoxyribose	\checkmark	
Sugar is ribose		\checkmark
Adenine base is present	\checkmark	\checkmark
Cytosine base is present	\checkmark	

	DNA	RNA
Guanine base is present		\checkmark
Thymine base is present		
Uracil base is present		
Shape is double helix		

	DNA	RNA
Shape is single stranded		
Located in nucleus	\checkmark	\checkmark
Located in cytoplasm		\checkmark
Stores genetic information		

	DNA	RNA
Functions in protein synthesis	\checkmark	\checkmark
Composed of nucleotides		
Template for synthesis of proteins	\checkmark	
Transcribes the Template		\checkmark
More than one type		

DNA (deoxyribonucleic acid) bases:

Thymine (T) Cytosine (C) Adenine (A) Guanine (G)

Pyrimidines: single ring bases Complimentary binding pattern:

- Adenine + Thymine
- Cytosine + Guanine

Purines: double ring bases

(share 2 hydrogen bonds) (share 3 hydrogen bonds)

RNA: ribonucleic acid

Similar to DNA except:

- Sugar in RNA = ribose
- Base "uracil" instead of thymine
- Single stranded

Structure and Replication of DNA:

Composition of DNA

Erwin Chargaff studied DNAs from various sources and analyzed the distribution of purines and pyrimidines in them.

The distribution of the bases adenine (A), guanine (G), thymine (T), and cytosine (C) varied among species.

But the total purines (A and G) and the total pyrimidines (T and C) were always equal.

%A = %T,

and %G = %C www.learnoma.com

Composition of Human DNA

For example:

|--|

Adenine (A) 30.3% Guanine (G) 19.5% Total purines: 49.8% Thymine (T) 30.3% Cytosine (C) 19.9% Total pyrimidines: 50.1%

Base Pairing

Watson and Crick proposed that A and T were equal because of complementary hydrogen bonding.

Base Pairing

Likewise, the amounts of G and C were equal because of complementary hydrogen bonding.

The DNA Duplex

Watson and Crick proposed a double-stranded structure for DNA in which a purine or pyrimidine base in one chain is hydrogen bonded to its complement in the other.

Two antiparallel strands of DNA are paired by hydrogen bonds between purine and pyrimidine bases.

Helical structure of DNA. The purine and pyrimidine bases are on the inside, sugars and phosphates on the outside.

DNA Replication

As the double helix unwinds, each strand acts as a template upon which its complement is constructed.

DNA Replication

