Sinha Sir, Kota

The tests performed on compound X and their inferences are:

Test	Inference	
2 4-DNP test	Coloured	

(b) Iodoform test yellow precipitate

(c) Azo-dye test No dye formation

Compound 'X' is:

(a)

Sinha Sir, Kota

The major product of the following reaction is:

Sinha Sir, Kota

The products formed in the reaction of cumene with O2 followed by treatment with dil. HCl are:

O
$$CH_3$$
(2) and CH_3 —OH
(4) OH and H_3C OH CH_3

Sinha Sir, Kota

An aromatic compound 'A' having molecular formula C₇ H₆ O₂ on treating with aqueous ammonia and heating forms compounds 'B'. The compound B on reaction with molecular bromine and potassium hydroxide provides compound 'C' having molecular formula C₆H₇N. The structure of 'A' is:

Sinha Sir, Kota

The major product of the following reaction is:

$$OH \longrightarrow Br_2(excess) \longrightarrow SO_3H$$

$$OH \longrightarrow OH \longrightarrow OH \longrightarrow OH \longrightarrow OH$$

$$(1) \longrightarrow Br \longrightarrow Br$$

$$(2) \longrightarrow Br \longrightarrow Br$$

$$(3) \longrightarrow Br \longrightarrow Br$$

$$(4) \longrightarrow Br$$

$$SO_3H$$

Sinha Sir, Kota

A compound 'X' on treatment with Br₂/NaOH, provided C₃H₉N, which gives positive cabylamine test. Compound 'X' is :

- (1) CH₃COCH₂NHCH₃
- (3) CH₃CH₂COCH₂NH₂

- (2) CH₃CON(CH₃)₂
- (4) CH₃CH₂CH₂CONH₂

The major product of the following reaction is:

$$H_{3}C \longrightarrow NH_{2} \xrightarrow{\text{(ii) NaNO}_{2}/H^{\oplus}} \xrightarrow{\text{(iii) CrO}_{3}/H^{\oplus}}$$

$$(1) \longrightarrow (2) \text{ CH}_{3} \longrightarrow (4) \longrightarrow$$

Sinha Sir, Kota

Coupling of benzene diazonium choloride with 1-naphthol in alkaline medium will give :

(1)
$$\bigcirc$$
 (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (4) \bigcirc (7) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (6) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (6) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) (7) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (3) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (7) \bigcirc (7) \bigcirc (7) \bigcirc (8) \bigcirc (9) \bigcirc (9) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (1) \bigcirc (3) \bigcirc (1) \bigcirc (1) \bigcirc (1) \bigcirc (2) \bigcirc (1) \bigcirc (3) \bigcirc (2) \bigcirc (3) \bigcirc (3) \bigcirc (4) \bigcirc (4) \bigcirc (5) \bigcirc (5) \bigcirc (7) (7) (1) \bigcirc (7) (1) \bigcirc (7) (1) \bigcirc (7) (1) \bigcirc (1)

Sinha Sir, Kota

Aniline dissolved in dilute HCl is reacted with sodim nitrite at 0°C. This solution was added dropwise to a solution containing equimolar mixture of aniline and phenol in dil. HCl. The structure of the major product is:

(1)
$$N = N - O$$
 OH

(2)
$$N = N - NH_2$$

(4) $N = N - NH - NH_2$

Sinha Sir, Kota

Ethylamine (C₂H₅NH₂) can be obtained from N-ethylphthalimide on treatement with :

(1) CaH₂

(2) H₂O

(3) NH₂NH₂

(4) NaBH₄

Sinha Sir, Kota

The major product of the following reaction is:

HO
HO
1.
$$CrO_3$$
2. $SOCI_2/\Delta$
3. Δ

(1)
HO
(2)
CI
(3)
CI
(4)
HO
HO
(4)

Sinha Sir, Kota

Benzene diazonium chloride on reaction with aniline in the presence of dilute hydrochloric acid gives :

$$(1)$$
 $N=N NH_2$

$$(4) N=N-N$$

$$H_2N$$

Sinha Sir, Kota

Consider the following reaction:

The product 'X' is used:

- (1) in laboratory test for phenols
- (2) in protein estimation as an alternative to ninhydrin
- (3) in acid base titration as an indicator
- (4) as food grade colourant

Sinha Sir, Kota

In the following reaction sequence,

the major product B is:

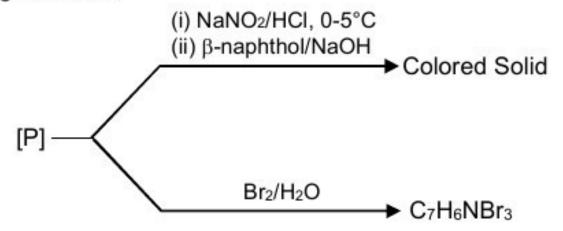
Sinha Sir, Kota

Which of these will produce the highest yield in Friedel Craft reaction?

$$(1) \bigcirc OH$$

$$(2) \bigcirc OH$$

$$(3) \bigcirc OH$$


$$(4) \bigcirc OH$$

Sinha Sir, Kota

The major product Z obtained in the following reaction scheme is

Sinha Sir, Kota

Consider the following reactions,

The compound [P] is:

Sinha Sir, Kota

The major product of the following reaction is:

Sinha Sir, Kota

Three isomers A, B and C (mol. formula C₈H₁₁N) give the following results:

A and C
$$\xrightarrow{\text{Diazotization}}$$
 P + Q $\xrightarrow{\text{(i) hydrolysis}}$ $\xrightarrow{\text{(ii) oxidation}}$ $\xrightarrow{\text{(ii) oxidation}}$ $\xrightarrow{\text{(KMnO}_4 + H^+)}$ $\xrightarrow{\text{(ii) hydrolysis}}$ $\xrightarrow{\text{(ii) hydrolysis}}$ $\xrightarrow{\text{(ii) hydrolysis}}$ $\xrightarrow{\text{(ii) oxidation}}$ $\xrightarrow{\text{(iii) oxidation}}$

R has lower boiling point than S

 $B \xrightarrow{C_6H_5SO_2Cl}$ alkali-insoluble product A, B and C, respectively are:

$$(1) \bigcirc \begin{array}{c} NH_2 \\ CH_2CH_3 \end{array}, \bigcirc \begin{array}{c} CH_2NH_2 \\ CH_2CH_3 \end{array}, \bigcirc \begin{array}{c} CH_2CH_3 \end{array}$$

$$(2) \bigcirc \begin{array}{c} CH_2CH_3 \\ NH_2 \end{array}, \bigcirc \begin{array}{c} CH_2CH_3 \\ CH_2CH_3 \end{array}, \bigcirc \begin{array}{c} CH_2CH_3 \\ CH_2CH_3 \end{array}$$

$$(3) \bigcirc \begin{array}{c} CH_2CH_3 \\ H_2N \end{array}, \bigcirc \begin{array}{c} CH_2CH_3 \\ CH_2CH_3 \end{array}, \bigcirc \begin{array}{c} CH_2CH_3 \\ CH_2CH_3 \end{array}$$

$$(4) \bigcirc \begin{array}{c} CH_2CH_3 \\ CH_2CH_3 \end{array}, \bigcirc \begin{array}{c} CH_2NHCH_3 \\ CH_2CH_3 \end{array}$$

Sinha Sir, Kota

In the following reaction sequence, [C] is:

Sinha Sir, Kota

In the following reaction sequence the major product A and B are:

Sinha Sir, Kota

The final major product of the following reaction is:

Sinha Sir, Kota

Which of the following compounds can be prepared in good yield by Gabriel phthalimide synthesis?

Sinha Sir, Kota

The correct match between Item - I (starting material) and Item-II (reagent) for the preparation of benzaldehyde is:

	Item-I		Item-II
(1)	Benzene	(P)	HCl and SnCl ₂ , H ₃ O+
(II)	Benzonitrile	(Q)	H ₂ , Pd-BaSO ₄ ,S and quinoline
(III)	Benzoyl Chloride	(R)	Co, HCl and AlCl ₃
(1) (I)-(R), (II)-(Q) and (III)-(P) (3) (I)-(P), (II)-(Q) and (III)-(R)			(2) (I)-(Q), (II)-(R) and (III)-(P) (4) (I)-(R), (II)-(P) and (III)-(Q)

Sinha Sir, Kota

A solution of phenol in chloroform when treated with aqueous NaOH gives compound P as a major product. The mass percentage of carbon in P is_____. (to the nearest integer)

(Atomic mass : C = 12; H = 1; O = 16)

Sinha Sir, Kota

In the following reaction the reason why meta-nitro product also formed is:

- (1) –NH₂ group is highly meta-directive
- (2) low temperature
- (3) –NO₂ substitution always takes place at meta-position
- (4) Formation of anilinium ion

Sinha Sir, Kota

Which of the following compound gives pink colour on reaction with phthalic anhydride in conc. H₂SO₄ followed by treatment with NaOH?

Sinha Sir, Kota

'A' and 'B' in the following reactions are:

Sinha Sir, Kota

The correct order of the following compounds showing increasing tendency towards nucleophilic substitution reaction is :

$$\begin{array}{c} CI \\ \hline \\ O_2N \\ \hline \\ NO_2 \\ \hline \\ II \\ \hline \\ (1) \ (i) < (ii) < (iii) < (ii$$

Sinha Sir, Kota

The diazonium salt of which of the following compounds will form a coloured dye on reaction with β -Naphthol in NaOH ?

$$(1) \bigcirc NH_2 \qquad (2) \bigcirc CH_2NH_2 \qquad (3) \bigcirc N-CH_3 \qquad (4) \bigcirc NH-CH_3$$

Sinha Sir, Kota

1.86 g of aniline completely reacts to form acetanilide. 10% of the product is lost during purification. Amount of acetanilide obtained after purification (in g) is \times 10⁻².

Sinha Sir, Kota

The major product of the following reaction is:

Sinha Sir, Kota

The correct sequence of reagents used in the preparation of 4-bromo-2-nitroethylbenzene:

- (1) HNO₃/H₂SO₄, Br₂/AlCl₃, CH₂COCl/AlCl₃, Zn-Hg/HCl
- (2) Br₂/AlBr₃, CH₃COCI/AlCl₃, HNO₃/H₂SO₄, Zn/HCl
- (3) CH₃COCI/AlCI₃, Zn-Hg/HCI, Br₂/AlBr₃, HNO₃/H₂SO₄
- (4) CH₃COCI/AICI₃, Br₂/AIBr₃, HNO₃/H₂SO₄, Zn/HCI

Sinha Sir, Kota

Identify the major products A and B respectively in the following reaction of phenol:

Sinha Sir, Kota

An amine on reaction with benzenesulphonyl chloride produces a compound insoluble in alkaline solution. This amine can be prepared by ammonolysis of ethyl chloride. The correct structure of amines is :

(1) CH₃CH₂CH₂NHCH₃

H I (2) CH₃CH₂CH₂N–CH₂CH₃

(3) CH₃CH₂NH₂

Sinha Sir, Kota

Given below are two statements:

Statement-I: o-Nitrophenol is steam volatile due in intramolecular hydrogen bonding.

Statement-II: o-Nitrophenol has high melting due to hydrogen bonding.

- (1) Both Statement I and Statement II are true (2) Statement I is false but Statement II is true
- (3) Statement I is true but Statement II is false (4) Both Statement I and Statement II are false

Sinha Sir, Kota

Match List-I with List-II.

	List-I	s: .	List-II
(a)	$ \begin{array}{c} CI \\ Cu_2Cl_2 \end{array} $ $+ N_2$	(i)	Wurtz reaction
(b)	$ \begin{array}{c} CI \\ Cu, HCI \end{array} $ $+ N_2$	(ii)	Sandmeyer reaction
(c)	2CH ₃ CH ₂ CI + 2Na — Ether → C ₂ H ₅ –C ₂ H ₅ + 2NaCI	(iii)	Fittig reaction
(d)	2C ₆ H ₅ Cl + 2Na — Ether → C ₆ H ₅ -C ₆ H ₅ + 2NaCl	(iv)	Gatterman reaction

Choose the correct answer from the options given below:

Sinha Sir, Kota

Which of the following reaction DOES NOT involve Hoffmann bromamide degradation?

(1)
$$CH_2$$
— $C-NH_2$ CH_2 — C

Sinha Sir, Kota

In the above chemical reaction, intermediate "X" and reagent/condition "A" are :

(1)
$$X - \bigcup_{N_2^+ Cl^-}$$
; $A - H_2O/NaOH$ (2) $X - \bigcup_{N_2^+ Cl^-}$; $A - H_2O/\Delta$ (3) $X - \bigcup_{N_2^+ Cl^-}$; $A - H_2O/\Delta$ (4) $X - \bigcup_{N_2^+ Cl^-}$; $A - H_2O/NaOH$

By Sinha Sir, Kota

Which of the following reaction is an example of ammonolysis?

$$(1) C_6H_5CH_2CN \xrightarrow{[H]} C_6H_5CH_2NH_2$$

$$(2) C_6H_5CH_2CI + NH_3 \longrightarrow C_6H_5CH_2NH_2$$

(2)
$$C_6H_5CH_2CI + NH_3 \longrightarrow C_6H_5CH_2NH_2$$

(3)
$$C_6H_5COCI + C_6H_5NH_2 \longrightarrow C_6H_5CONHC_6H_5$$
 (4) $C_6H_5NH_2 \stackrel{HCI}{\longrightarrow} C_6H_5\stackrel{+}{N}H_3CI^-$

Sinha Sir, Kota

In the above reaction, the structural formula of (A), "X" and "Y" respectively are:

$$(1) \begin{array}{c} & & & & & \\$$

Sinha Sir, Kota

Products X & Y are respectively?

Sinha Sir, Kota

A reaction of 0.1 mole of Benzylamine with bromomethane gave 23 g of Benzyl trimethyl ammonium bromide. The number of moles of bromomethane consumed in this reaction are $n \times 10^{-1}$, when $n = \dots$ (Round off to the Nearest Integer.)

[Given: Atomic masses: C: 12.0 u, H: 1.0 u, N: 14.0 u, Br: 80.0 u]

Sinha Sir, Kota

An organic compound "A" on treatment with benzene sulphonyl chloride gives compound B. B is soluble in in dil. NaOH solution. Compound A is:

Sinha Sir, Kota

Consider the given reaction, percentage yield of:

Sinha Sir, Kota

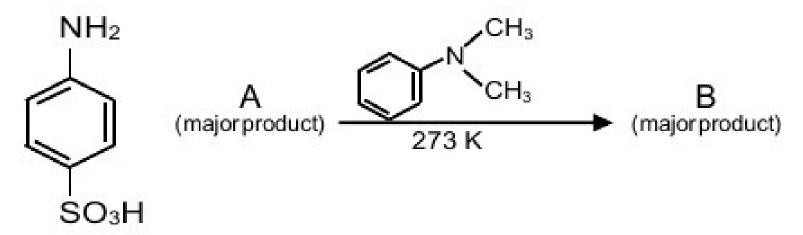
$$+ Br_2 \xrightarrow{FeBr_3} + HBr$$

Consider the above reaction where 6.1 g of Benzoic acid used to get 7.8 g of m-bromo benzoic acid. The percentage yield of the product is_____.

(Round off to the Nearest Integer).

[Given : Atomic masses : C : 120 μ , H : 1.0 μ , O : 16.0 μ , Br : 80.0 μ]

Sinha Sir, Kota


Compound A is converted to B on reaction with CHCl₃ and KOH. The compound B is toxic and can be decomposed by C. A, B and C respectively are :

- (1) Primary amine, isonitrile compound, conc. HCI
- (2) Secondary amine, nitrile compound, conc. NaOH
- (3) Primary amine, nitrile compound, conc. HCl
- (4) Secondary amine, isonitrile compound, conc. NaOH

Sinha Sir, Kota

In the above reactions, product A and product B respectively are:

Sinha Sir, Kota

Consider the above reaction, compound B is:

(1)
$$N = N$$
 $N = N$ $N = N$

Sinha Sir, Kota

An organic compound A(C₆H₆O) gives dark green colouration with ferric chloride. On treatment with CHCl₃. and KOH followed by acidification gives compound B. Compound B can also be obtained from compound C on reaction with pyridinium chlorochromate (PCC). Identify A, B and C.

(1)
$$A = \bigcirc$$

OH

OH

CH2OH

CH2OH

OH

CH2OH

CH2OH

OH

CH2OH

OH

CH2OH

CH2OH

OH

CH2OH

Sinha Sir, Kota

In the chemical reaction given above A & B respectively are:

(1) H₃PO₂ and CH₃CH₂Cl

(2) CH₃CH₂Cl and H₃PO₂

(3) H₃PO₂ and CH₃CH₂OH

(4) CH₃CH₂OH and H₃PO₂

Sinha Sir, Kota

Given below are two statements, one is labelled as Assertion (A) and other is labelled as Reason (R).

Assertion (A): Gabriel phthalimide synthesis cannot be used to prepare aromatic primary amines.

Reason (R): Aryl halides do not undergo nucleophilic substitution reaction.

In the light of the above statements, choose the correct answer from the options given below:

- (1) (A) is true but (R) is false
- (2) (A) is false but (R) is true
- (3) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (4) Both (A) and (R) are true but (R) is correct explanation of (A)

Sinha Sir, Kota

Which one of the products of the following reactions does not react with Hinsberg reagent to from sulphonamide:

(1)
$$+ \operatorname{SnCl_2} + \operatorname{HCl} \longrightarrow$$
 (2) $+ \operatorname{LiAlH_4} \xrightarrow{H_3O^{\oplus}}$ CHO CN $+ \operatorname{H_2}/\operatorname{Ni} \longrightarrow$ (4) $+ \operatorname{Na/Hg} \xrightarrow{C_2H_5OH}$

Sinha Sir, Kota

(Major Product)

The given reaction can occur in the presence of :

(a) Bromine water

(b) Br₂ in CS₂, 273 K

(c) Br₂/FeBr₃

(d) Br₂ in CHCl₃, 273 K

(1) (a), (b) and (d) only

(2) (b) and (d) only

(3) (b), (c) and (d) only

(4) (a) and (c) only

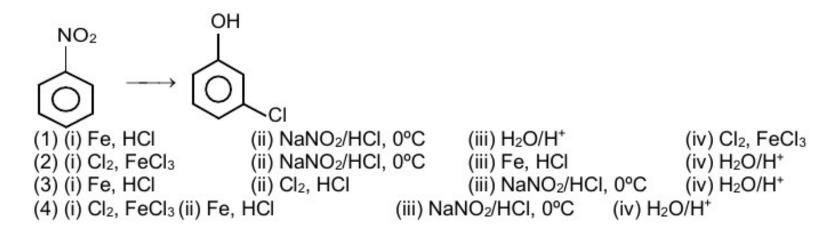
Sinha Sir, Kota

What is the major product "P" of the following reaction?

$$(1) \begin{array}{c} CH_{3} & (i) \text{ NaNO}_{2}, \text{HCI, 278 K} \\ \hline \\ NH_{2} & (ii) \text{ H}_{2}\text{O} \end{array} \\ (major product) \\ CH_{3} & (H_{3}) \\ \hline \\ OH & (H_{3}) \\ \hline \\ OH & (H_{3}) \\ \hline \\ OH & (H_{3}) \\ \hline \\ CH_{3} & (H_{3}) \\ \hline \\ CH_{4} & (H_{3}) \\ \hline \\ CH_{5} & (H_{5}) \\$$

Sinha Sir, Kota

$$C_6H_5NO_2 \xrightarrow{Sn + HCI}$$
 "A" $\xrightarrow{C_6H_5N_2^+CI^-}$ P
 H^+ (Yellow coloured compound)


Consider the above reaction, the Product "P" is:

$$(1) \qquad N=N \qquad (2) \qquad N=N \qquad NH_2$$

$$(3) \qquad N=N-N \qquad (4) \qquad N=N-N \qquad (5)$$

Sinha Sir, Kota

The correct sequence of correct reagents for the following transformation is:

Sinha Sir, Kota

What is A in the following reaction?

Sinha Sir, Kota

The correct options for the products A and B of the following reactions are:

$$A \stackrel{Br_{2}(Excess)}{\longleftarrow} \bigoplus_{H_{2}O} \bigcirc \bigoplus_{GS_{2}, <5^{\circ}G} B$$

$$(1) A = \bigoplus_{Br} \bigoplus_{Br} Br \qquad (2) A = \bigoplus_{Br} \bigoplus_{Br} OH Br \qquad (3) A = \bigoplus_{Br} \bigoplus_{Br} Br \qquad (4) A = \bigoplus_{Br} \bigoplus_{Br} Br \qquad (4) A = \bigoplus_{Br} \bigoplus_{Br} Br \qquad (5) Br \qquad (6) Br \qquad ($$

Sinha Sir, Kota

Which one of the following phenols does not give colour when condensed with phthalic anhydride in presence of conc. H₂SO₄?

Sinha Sir, Kota

The correct structures of A and B formed in the following reactions are:

Sinha Sir, Kota

The structures of A and B formed in the following reaction are: [Ph=-C₆H₅]

Sinha Sir, Kota

Identify correct A, B and C in reaction sequence given below:

conc.HNO₃

$$CONC.H_2SO_4$$

$$A Cl_2$$

$$Anhyd. AlCl_3$$

$$C = NO_2$$

$$C = Cl$$

$$C$$

Sinha Sir, Kota

Which one of the following gives the most stable Diazonium salt?