Crystallography Fundamentals

Weiss Parameters, Miller Indices & Interplanar Distance

1. Weiss Parameters

Weiss parameters describe the intercepts of a crystal plane on the three crystallographic axes. They were introduced by Christian Samuel Weiss in 1815 as the first systematic method to describe crystal planes.

Definition

If a plane intercepts the crystallographic axes at distances ma, nb, and pc from the origin, where a, b, and c are the unit cell parameters, then the Weiss parameters are:

Weiss Parameters = m : n : p
Example 1: Weiss Parameters

A plane intercepts the X-axis at 2a, Y-axis at 3b, and Z-axis at 1c.

Weiss Parameters: 2 : 3 : 1

Limitations of Weiss Parameters

2. Miller Indices

Miller indices, introduced by William Hallowes Miller in 1839, provide a more convenient notation for crystal planes. They are the reciprocals of Weiss parameters, cleared of fractions.

Definition and Method

Find the intercepts of the plane on the three axes in terms of lattice parameters a, b, c
Take reciprocals of these intercepts
Clear fractions by multiplying by the LCM
Reduce to smallest integers (if possible)
Enclose in parentheses: (hkl)
If intercepts are ma, nb, pc
Reciprocals: 1/m : 1/n : 1/p
Miller Indices: (hkl) where h:k:l = 1/m : 1/n : 1/p
Example 2: Converting Weiss to Miller

Given: Weiss parameters = 2 : 3 : 1

Step 1: Intercepts = 2a : 3b : 1c

Step 2: Reciprocals = 1/2 : 1/3 : 1/1

Step 3: LCM of denominators = 6

Step 4: Multiply by 6: 3 : 2 : 6

Miller Indices: (326)

Special Cases

Plane Type Intercepts Miller Indices Example
Parallel to X-axis ∞ : n : p (0kl) (011)
Parallel to Y-axis m : ∞ : p (h0l) (101)
Parallel to Z-axis m : n : ∞ (hk0) (110)
Parallel to XY-plane ∞ : ∞ : p (001) (001)
Notation:
• (hkl) - Single plane
• {hkl} - Family of equivalent planes
• [hkl] - Direction
• ⟨hkl⟩ - Family of equivalent directions
• (h̄kl) - Negative index (h̄ represents -h)

3. Interplanar Distance (d-spacing)

The interplanar distance dhkl is the perpendicular distance between parallel planes in a family (hkl). This parameter is crucial for X-ray diffraction analysis.

Formulas for Different Crystal Systems

1. Cubic System (a = b = c, α = β = γ = 90°)
dhkl = a/√(h² + k² + l²)
Example 3: Cubic d-spacing

Given: NaCl with a = 5.64 Å, find d200

Solution:

d200 = 5.64/√(2² + 0² + 0²) = 5.64/√4 = 5.64/2 = 2.82 Å

2. Tetragonal System (a = b ≠ c, α = β = γ = 90°)
1/d²hkl = (h² + k²)/a² + l²/c²
3. Orthorhombic System (a ≠ b ≠ c, α = β = γ = 90°)
1/d²hkl = h²/a² + k²/b² + l²/c²
4. Hexagonal System (a = b ≠ c, α = β = 90°, γ = 120°)
1/d²hkl = 4(h² + hk + k²)/(3a²) + l²/c²
5. Rhombohedral System (a = b = c, α = β = γ ≠ 90°)
1/d²hkl = (h² + k² + l²)sin²α + 2(hk + kl + hl)(cos²α - cosα) / [a²(1 + 2cos³α - 3cos²α)]
6. Monoclinic System (a ≠ b ≠ c, α = γ = 90°, β ≠ 90°)
1/d²hkl = 1/sin²β × [h²/a² + l²sin²β/c² + 2hlcosβ/(ac)] + k²/b²
7. Triclinic System (a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90°)
Most complex formula involving all lattice parameters and angles

Physical Significance

4. Relationship Between Parameters

Weiss Parameters Miller Indices d-spacing (Cubic) 1 : 1 : 1 (111) a/√3 1 : 1 : ∞ (110) a/√2 1 : ∞ : ∞ (100) a 2 : 2 : 1 (112) a/√6 1 : 1 : 1/2 (221) a/3

5. Applications in IIT JEE

Common Problem Types:
  • Converting between Weiss parameters and Miller indices
  • Calculating d-spacings for given Miller indices
  • Using Bragg's law: nλ = 2d sinθ
  • Determining crystal structure from d-spacing ratios
  • Finding lattice parameters from diffraction data
Example 4: Complete Problem

Problem: In a cubic crystal with a = 4.0 Å, find the d-spacing for the plane with Weiss parameters 1 : 2 : 3.

Solution:

Step 1: Convert to Miller indices

Weiss: 1 : 2 : 3 → Reciprocals: 1 : 1/2 : 1/3

LCM = 6 → Miller indices: (623)

Step 2: Calculate d-spacing

d623 = 4.0/√(6² + 2² + 3²) = 4.0/√(36 + 4 + 9) = 4.0/√49 = 4.0/7 = 0.571 Å

Remember: Miller indices are always written as the smallest possible integers. When converting from Weiss parameters, always check if the final indices can be reduced further by dividing by their greatest common divisor.